Smale’s 17th Problem: Average Polynomial Time to Compute Affine and Projective Solutions
نویسندگان
چکیده
In the series of papers [SS93a, SS93b, SS93c, SS94, SS96], Shub and Smale defined and studied in depth a homotopy method for solving systems of polynomial equations. Some articles preceding this new treatment were [Kan49, Sma86, Ren87, Kim89, Shu93]. Other authors have also treated this approach in [Mal94, Yak95, Ded97, BCSS98, Ded01, Ded06, MR02] and more recently in [Shu08, BS08]. In a previous paper [BP08], the authors furthered the program initiated in the series [SS93a] to [SS94], describing an algorithm that computes projective approximate zeros of systems of polynomial equations in polynomial running time, with bounded (small) probability of failure. In this paper, we give an updated version of some of the concepts introduced in [BP08], and we develop two important extensions of the results therein. On one hand, we describe a procedure that, instead of assuming a small probability of error, finds an approximate zero of systems of polynomial equations, on the average, in polynomial time (cf. Theorem 1.10). This improvement is made in order to answer explicitly the question posted by Smale in his 17th problem. On the other hand, we extend the result to the computation of affine solutions of systems of polynomial equations. This new result requires us to understand the probability distribution of the norm of the affine solutions of polynomial systems of equations (Theorem 1.9 below). These results may be summarized as follows.
منابع مشابه
On Smale's 17th Problem: A Probabilistic Positive Solution
Smale’s 17th Problem asks “Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average [for a suitable probability measure on the space of inputs], in polynomial time with a uniform algorithm?” We present a uniform probabilistic algorithm for this problem and prove that its complexity is polynomial. We thus obtain a partial positive solution to Smale 17th P...
متن کاملCondition - The Geometry of Numerical Algorithms
Abstract. The performance of numerical algorithms, both regarding stability and complexity, can be understood in a unified way in terms of condition numbers. This requires to identify the appropriate geometric settings and to characterize condition in geometric ways. A probabilistic analysis of numerical algorithms can be reduced to a corresponding analysis of condition numbers, which leads to ...
متن کاملOn a Problem Posed by Steve Smale
The 17th of the problems proposed by Steve Smale for the 21st century asks for the existence of a deterministic algorithm computing an approximate solution of a system of n complex polynomials in n unknowns in time polynomial, on the average, in the size N of the input system. A partial solution to this problem was given by Carlos Beltrán and Luis Miguel Pardo who exhibited a randomized algorit...
متن کاملRigid continuation paths I. Quasilinear average complexity for solving polynomial systems
How many operations do we need on the average to compute an approximate root of a random Gaussian polynomial system? Beyond Smale’s 17th problem that asked whether a polynomial bound is possible, we prove a quasi-optimal bound (input size)1`op1q. This improves upon the previously known (input size) 3 2 `op1q bound. The new algorithm relies on numerical continuation along rigid continuation path...
متن کاملFast computation of zeros of polynomial systems with bounded degree under finite-precision
A solution for Smale’s 17th problem, for the case of systems with bounded degree was recently given. This solution, an algorithm computing approximate zeros of complex polynomial systems in average polynomial time, assumed infinite precision. In this paper we describe a finite-precision version of this algorithm. Our main result shows that this version works within the same time bounds and requ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009